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Abstract. Corrections to the exact heavy–quark symmetry results are expected to come from the inverse
powers of the heavy-quark mass. We show, by an explicit calculation using the quark model, that the
breaking of the spin symmetry is suppressed by other kinematic effects even when the quark masses are
not heavy.

1 Introduction

The heavy–quark symmetry, which appears in the heavy–
quark limit, gives exact results for the decays of heavy
hadrons [1]. Due to the heavy–quark symmetry all form
factors in the heavy–to–heavy type of decays such as B →
D(∗)eν̄e (D(∗) = D or D∗) can be related, in the heavy–
quark limit, to a single universal function called the Isgur–
Wise function. The Isgur–Wise function is of nonpertur-
bative origin and has been of great interest to both theo-
retical and experimental studies. In the heavy–quark sym-
metry limit, the decoupling of the heavy–quark spin with
other light fields leads to symmetry relations among
hadronic matrix elements. The corrections to the sym-
metry are expected to come from inverse powers of the
mass of the heavy quark. It has been unclear how well
these would extrapolate to heavy–to–light quark decays,
although presumably the charm quark might still be heavy
enough.

Many of these symmetries were anticipated in some
versions of the constituent quark model but there has not
been an estimate of how much of these were an artifact of
the quark model, and of the choice of wave functions. In a
paper using the relativistic quark model [2], we found that
the breaking of the spin symmetry among hadronic form
factors is small even for heavy–to–light quark decays. In
this paper, we show explicitly, using the same model, that
there exist kinematic effects that would also suppress the
breaking of spin symmetry. In fact, the quark model keeps
the spin–symmetry rules remarkably well even for a wide
range of masses.

We first recapitulate some aspects of spin symmetry
for mesons in the heavy–quark limit. For a pseudoscalar
meson P (Qq̄) with heavy constituent quark Q, the spin
of Q decouples from all other light fields in P [3]. We can
therefore construct the spin operator SZ

Q for Q such that
in the heavy mQ limit

SZ
Q|P (Qq̄)〉 =

1
2
|VL(Qq̄)〉 , (1)

where VL(Qq̄) is the longitudinal component of a vector
meson with the same quark content as P . In practice,
the spin symmetry in (1) can be transformed into identi-
ties between the hadronic matrix elements, and thus some
form factor relations, for H → P and H → VL, where
H(hq̄) is a pseudoscalar meson with a heavy quark h. Us-
ing the relation [3] [SZ

Q, A0 + A3] = (1/2)(V 0 + V 3) for
the currents Vµ = Q̄γµh and Aµ = Q̄γµγ5h of the tran-
sition h → Q, it can be shown that (1) leads to the fol-
lowing identity between the hadronic matrix elements for
H → VL and H → P ,

〈VL|A0 + A3|H〉 = 〈P |V 0 + V 3|H〉 . (2)

In |P 〉 and |VL〉 the spatial momentum of the quark Q
is defined in the z–direction for the Q spinor to be an
eigenstate of SZ

Q. The spatial momenta of P and VL should
therefore also be defined in the z–direction such that the
correction to the spin symmetry is of the order of Λ/mQ,
where Λ is the internal energy scale of P and VL.

2 Kinematics

In this paper, we consider the breaking of the spin sym-
metry coming from a finite quark mass mQ by directly
calculating, in particular, the hadronic matrix elements
in (2). We use the relativistic quark model formulated in
the infinite momentum frame (or equivalently, the light–
front quark model) [2,4–6]. We first define the ratio of the
matrix elements in (2) as

ρ(q2) =
〈P (k′)|V 0 + V 3|H(p)〉
〈VL(k)|A0 + A3|H(p)〉 , (3)

so that 1 − ρ represents a measure of the breaking of
the spin symmetry since ρ = 1 in the heavy–quark limit.
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The ratio ρ is a function of momentum transfer such that
〈VL|A0 + A3|H〉 and 〈P |V 0 + V 3|H〉 are evaluated at the
same q2. This allows us to evade the usual problem of
kinematic discrepancies when we come to consider a num-
ber of different final states. Since the spatial momenta of
P and VL are in the z–direction, we define the function ρ
in a frame where the parametrization of the momenta in
the z–direction is given by

pµ = (EH ; 0, 0, pz) ,

kµ = (EV ; 0, 0, kz) ,

k′µ = (EP ; 0, 0, k′z) . (4)

The vector and scalar masses mV and mP are different
for finite mQ, so VL and P will not carry the same momen-
tum even though the initial state H has the same pz. We
write the momenta kz and k′z in terms of the frame pa-
rameter pz through the condition q2 = (p−k)2 = (p−k′)2.
The general parametrization in (4) includes the particular
case of the infinite momentum frame in which kz = k′z =
pz = P where P → ∞ and q2 = 0. It is important to note
that the function ρ, when calculated in the infinite mo-
mentum frame, is defined at q2 = 0 only1. This is also the
point of maximum recoil, which is usually difficult to treat
in a non–relativistic quark model, since a large amount of
energy is given to the outgoing particle.

The mass–shell conditions for p, k, and k′ give the
following constraints on the momenta in (4)

mV

mP

(
EP + k′z

EV + kz

)
=

w − √
w2 − 1

w′ − √
w′2 − 1

, (5)

where w = p · k/(mHmV ) and w′ = p · k′/(mHmP ). The
ratio (EP +k′z)/(EV +kz) in (5) is therefore invariant for
the frame defined in (4) and is a function of q2 through
the relation q2 = (p − k)2 = (p − k′)2.

It can be shown from the covariant expansion of the
hadronic matrix elements [7] that 〈P (k′)|V 0 + V 3|H(p)〉/
(EP + k′z) and 〈VL(k)|A0 + A3|H(p)〉/(EV + kz) are in-
variant with respect to the frame defined in (4). Using the
kinematic constraint in (5), it is easy to see that the func-
tion ρ(q2) is an invariant quantity. The matching of pz in
H → VL and H → P of ρ is the only choice that would
lead to this invariance. In the definition of ρ(q2), there
is an ambiguity coming from the fact that the ranges of
q2 are usually quite different in H → VL and H → P .
We will therefore consider the value of ρ at q2 = 0 only.
The hadronic matrix elements in (3) can be calculated re-
liably using the relativistic quark model formulated in the
infinite momentum frame. So at q2 = 0, we can write

1 For decays of a pseudoscalar meson to another pseudoscalar
meson there are usually two form factors while for the decay
of a pseudoscalar to a vector there are four independent form
factors. (For a definition see Ref. [2]). However, in the infi-
nite momentum or light–front frame, at q2 = 0, we have the
following much simpler connection for ρ:

ρIMF =
F H→P

1 (0)
AH→V

0 (0)
.

ρ(0) = ρIMF , (6)

where ρIMF is calculated in the infinite momentum frame.

3 Symmetry breaking

A brief introduction to the relativistic quark model in the
infinite momentum frame can be found in Refs. [2,5,6].
In the relativistic quark model, the wave function for the
ground state meson M(Qq̄) is given by

|M(k)〉 =
√

2
∫

dpQ

∑
σ σ̄

ΨJmJ

M, σσ̄|Q(pQ, σ)q̄(k − pQ, σ̄)〉 ,

(7)
where k = P ẑ is the spatial momentum of the meson M ,
pQ = (pT , xP) and pq̄ = k − pQ = (−pT , (1 − x)P) are
those of the quarks Q and q̄, respectively, in the infinite
momentum frame. Here, Ψ is the momentum wave func-
tion for the Qq̄ bound state. It has the separable form into
the spin and orbital parts as ΨJmJ

M, σσ̄ = RJmJ

M, σσ̄ φM , where
the expressions for RJmJ

M, σσ̄ and φM can be found in [2,6].
In the relativistic quark model, it is shown below that

ρIMF is a function of the mass ratios rQ, rq̄ and rΛ, where

rQ =
mQ

mh
, rq̄ =

mq̄

mh
, rΛ =

Λ

mh
.

Thus, we have ρ(0) = ρIMF (rQ, rq̄, rΛ) . The parameter
Λ determines the internal energy scale of the meson and
should be in the order of ΛQCD. The dependence on rΛ

appears only in the momentum wave function and actu-
ally there could be a separate Λ for each of the mesons
resulting in three different parameters. We take them all
to be equal here. The kinematic region of interest for rQ,
rq̄, and rΛ is such that 0 < rQ, rq̄, rΛ ≤ 1 .

In the relativistic quark model, the matrix elements in
(3) are calculated in terms of momentum wave function
integrals I1 and I2 as,

〈P (k′)|V 0 + V 3|H(p)〉 = 4P(2πm2
h)I1 ,

〈VL(k)|A0 + A3|H(p)〉 = 4P(2πm2
h)I2 , (8)

so that
ρIMF =

I1

I2
. (9)

The momentum wave function integrals I1 and I2 are
given by

I1 =
∫ 1

0
dx

∫ ∞

0
dy y φH φP

α0(1, rq̄)α0(rQ, rq̄) + y2

d0(1, rq̄)d0(rQ, rq̄)
(10)

and

I2 =
∫ 1

0
dx

∫ ∞

0
dy y φH φV

{
α0(1, rq̄)α1(rQ, rq̄)α2(rQ, rq̄)

+y2 [α1(rQ, rq̄) − α2(rQ, rq̄) + α0 (1, rq̄)]
}/

{
d0 (1, rq̄) d1 (rQ, rq̄) d2 (rQ, rq̄)

}
, (11)
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with the definitions

α0(rQ, rq̄) = xrq̄ + (1 − x)rQ ,

α1(rQ, rq̄) = rQ + xM0(rQ, rq̄) ,

α2(rQ, rq̄) = rq̄ + (1 − x)M0(rQ, rq̄) ,

M0(rQ, rq̄) =

√
r2
Q + y2

x
+

r2
q̄ + y2

1 − x
,

d0(rQ, rq̄) =
√

α2
0(rQ, rq̄) + y2 ,

d1(rQ, rq̄) =
√

α2
1(rQ, rq̄) + y2 ,

d2(rQ, rq̄) =
√

α2
2(rQ, rq̄) + y2 .

Although the form of (9 – 11) may look somewhat
unfamiliar since it is written in term of ratios of masses, it
can readily be checked against the more standard notation
given in [2,5]. It is easy to see that the factors α0,1,2, d0,1,2,
and M0 above are all positively defined in the kinematic
regions of x and y so that the wave function integrals I1
and I2, the two matrix elements in ρ(0) itself, are both
positive. Thus, the ratio ρ(0) is positive and the breaking
1−ρ(0) is always less than 1. The sign of I2 requires some
justification as there is a term M0(rQ, rq̄)(1−x)2(rQ −y2)
on expanding out the numerator of the integrand. Since
< y2 >∼ r2

Λ and rQ is greater than < y2 >, it is then
clear that this term should also be positive unless possibly
for light-to-light quark decay. We have shown numerically
below that this is still not the case.

We may write the orbital wave functions φH and φP,V

in terms of a Gaussian function φ(rQ, rq̄, rΛ) such that
φH = φ(1, rq̄, rΛ) and φP,V = φ(rQ, rq̄, rΛ). The expres-
sion for φ(rQ, rq̄, rΛ) is given by [2,5,6,8]

φ(rQ, rq̄, rΛ) = N

√
dz

dx
exp

(
−1

2
(y2 + z2)/r2

Λ

)
, (12)

where N is a normalization factor that is canceled out in
ρIMF , and

z =
(

x − 1
2

)
M0(rQ, rq̄) − (r2

Q − r2
q̄)

2M0(rQ, rq̄)
.

In [2], it has been pointed out that the scaling behavior
of the meson decay constant fM in the heavy–quark limit
imposes a constraint on the orbital wave function. The
Gaussian wave function in (12) is shown to satisfy the
scaling law 1/

√
mQ of fM in the heavy mQ limit.

In the numerical analysis of ρ(0), it is convenient to set
rΛ = rq̄ and vary rq̄ and rQ within the kinematic region of
0 < rq̄, rQ ≤ 1 . The spectator quark q̄ is thus considered
to be a light quark with mq̄ = Λ ∼ ΛQCD. The heaviness
of the decaying quark is defined relative to Λ through the
ratio rq̄. In case of a heavy quark decaying to a heavy or to
a light quark, the corresponding regions for rq̄ and rQ are
such that rq̄ is small and rQ varies between 1 and 0. For
a light quark that decays to another light quark, we look
instead at the region where rq̄ and rQ are both close to 1.

Fig. 1. The plot of 1 − ρ(0) using the Gaussian orbital wave
function. The plot is for heavy–to–heavy and heavy–to–light
decays with a quark mass ratio rq̄ = rΛ = 0.001 and where rQ

varies within the range of 0 < rQ ≤ 1. (rQ refers to the ratio
rQ = mQ/mh in the quark decay h → Q).

When rq̄ = rQ = 1, the symmetry breaking is calculated
to be 1 − ρ(0) = −0.33, using the Gaussian wave function
in (12). Thus, the heavy–quark symmetry does not apply
in this case, as expected.

Toy model

Before we deal with physical masses we use a toy model
for a very heavy quark decaying to a heavy or to a light
quark. This will allow us to see, closely to a strict heavy-
quark limit, the mass effect of the recoiling quark to the
symmetry in the relativistic quark model. In Fig. (1), we
show the plot of 1−ρ(0), where the mass ratios rq̄ and rΛ

are very small (here they are taken to be rq̄ = rΛ = 0.001
for which the decaying quark is around the top mass scale)
and the variation of rQ is within the range 0 < rQ ≤ 1.
We can see that 1−ρ(0) is positive except near rQ = 1. As
it will be discussed below, 1− ρ(0) will be positive for the
full range of rQ when rq̄ and rΛ are exactly zero, or mh

is infinitely heavy in the strict limit. Since ρ(0) represents
the ratio of form factors F H→P

1 (0)
AH→V

0 (0) as given in footnote 1,
we can check this with calculations using recent updated
quark model parameters [9], where it seems to hold even
for finite, physical masses. From the Gaussian form of the
wave function in Eq.(12), one expects 〈y2〉 = r2

Λ. Accord-
ing to the integral expression for ρIMF in (9), it is easy
to see that 1 − ρ(0) → 0 for a very heavy decaying quark
since 〈y2〉 → 0 in the integrands of I1 and I2. From the
figure we see that the symmetry breaking is less than 1%
overall (|1 − ρ(0)| < 0.01 compared with ρ(0) = 1 in the
strict limit) in the heavy–quark limit (small rq̄ = 0.001).
The mass effect of mQ (heavy quark effective theory) can
be seen clearly as the breaking of the spin symmetry grad-
ually decreases as we move from small rQ (heavy–to–light
decays) towards the region of larger rQ (heavy–to–heavy
decays). However, even at very small rQ, it is remarkable
that the symmetry breaking is less than 0.6%, showing
that the heavy limit is relatively unaffected by finite mass
corrections.
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Fig. 2. The plot of 1−ρ(0) with physical spectator quark mass
ratios of rq̄(bū) = mū/mb = 0.06 and rq̄(bs̄) = ms̄/mb = 0.1
for heavy b decays, and rq̄(cū) = mū/mc = 0.2 and rq̄(cs̄) =
ms̄/mc = 0.3 for heavy c decays.

Physical mass results

In Fig. (2), we show the plot of 1 − ρ(0) away from the
strict heavy–quark limit when physical quark mass ratios
are used. For heavy–quark decays with spectator quark
such as ū or s̄, we have rq̄(bū) = mū/mb = 0.06 and
rq̄(bs̄) = ms̄/mb = 0.1, respectively, in case of b decays,
and for c decays, we have rq̄(cū) = mū/mc = 0.2, and
rq̄(cs̄) = ms̄/mc = 0.3. In the figure, the breaking of the
spin symmetry is shown to be less than 10% for heavy b
and c quark decays. In the strictly heavy–quark limit of
rq̄ → 0 as indicated in Fig. (1), the mass effect of mQ is
clearly seen as the suppression of the symmetry breaking
increases, or 1 − ρ(0) is getting smaller toward zero, with
rQ = mQ/mh. Notice, however, that in cases of the finite
physical spectator mass ratios above, the breaking 1−ρ(0)
passes through zero at a recoil mass below its heaviest
limit of rQ = 1. This indicates that the largest suppression
of the symmetry breaking appears at a point other than
the heaviest recoil mass in contrary to the expectation
from the mass suppression of the heavy quark effective
theory.

In the cases of b decays (bū and bs̄) and the decay
of charm with a non–strange spectator (cū) as shown in
Fig. (2), the mass effect for the suppression of spin–sym-
metry breaking is still seen for wide range of rQ where
1 − ρ(0) is positive. In the region where 1 − ρ(0) is neg-
ative, however, the mass suppression no longer follows as
the magnitude of 1 − ρ(0) actually increases with rQ. In
spite of that, the size of the breaking is still small. This
suggests two things: (1) the recoil mass effect in the heavy-
quark effective theory is no longer dominating, and (2), the
spin symmetry, while not occurring in the expected way, is
nevertheless not badly broken even when the recoil mass
is light. We show below that when the decaying quark has
finite mass there are indeed kinematic factors other than
the recoil mass effects that govern the size of the symme-
try breaking. The breaking 1 − ρ(0) is also shown to be
suppressed by an overall factor of r2

Λ/rq̄ regardless of the
recoil mass.

Fig. 3. The corresponding values of rq̄ and rQ for which 1 −
ρ(0) = 0 and 1 − ρ(0) = ±0.01.

As shown in Fig. (2), the symmetry breaking 1 − ρ(0)
reaches zero and becomes negative at smaller value of rQ

when the mass ratio rq̄ is larger. In the strict heavy-quark
limit of rq̄ → 0, the point of zero breaking appears at the
heaviest recoil mass of rQ = 1 revealing predominantly the
mass suppression effect in 1−ρ(0). For physical spectator
quark mass ratio rq̄, the symmetry limit of zero breaking
appears at lower recoil mass rQ below the heaviest limit
when the decaying quark is relatively less heavier. This in-
dicates that kinematic effects are more pronounced when
rq̄ is larger since the mass suppression becomes less ob-
vious. As discussed below, the kinematic effect goes like
1 − rQ in the strict limit for which it behaves in the same
way as the mass suppression. When rq̄ is larger, the kine-
matic effect deviates from such behaviour obscuring the
overall mass suppression. Numerically, when rq̄ ≥ 0.251,
1 − ρ(0) is negative for all rQ and the mass effect is to-
tally obscured. A different type of behavior then enters for
the charm decay with a strange spectator (cs̄) where the
breaking of the symmetry is rather constant and about
4%.

In Fig. (3), we show the corresponding values of rq̄ and
rQ for which the spin symmetry holds exactly, viz., 1 −
ρ(0) = 0. The point of zero breaking is shown to lie within
the region where rq̄ is small (rq̄ ≤ 0.251) and the decaying
quark is heavy. As shown in the figure, the zero of 1−ρ(0)
appears at smaller rQ as the mass of the decaying quark
becomes less heavy (larger rq̄). Also shown in the figure are
the plots for which the spin–symmetry breaking is about
1% that is |1 − ρ(0)| = 0.01. It can been seen that a large
portion of the possible phase space of rQ and rq̄ is within
the region where |1 − ρ(0)| ≤ 0.01.

Kinematic suppression

How does the kinematic effect that gives rise to zero sym-
metry breaking in 1 − ρ(0) come about? To see this most
clearly and to show that it is indeed a kinematic effect,
we expand for small r2

Λ the kinematic terms of I1 and I2
in y2 (as < y2 >∼ r2

Λ) and integrate over y. In the Tay-
lor expansion, we relax the condition of rΛ = rq̄ adopted
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Fig. 4. The plot of the kinematic suppression [1 − rq̄ −
M0(rQ, rq̄)|x=xpeak ] with physical spectator quark mass ra-
tios of rq̄(bū) = mū/mb = 0.06, rq̄(bs̄) = ms̄/mb = 0.1,
rq̄(cū) = mū/mc = 0.2, and rq̄(cs̄) = ms̄/mc = 0.3.

in the numerical analysis and impose only the condition
that rΛ ∼ rq̄. This gives the leading term of the symmetry
breaking 1 − ρ(0) in r2

Λ as

1 − ρ(0) = r2
Λ

∫ 1
0 dxϕ(1, rq̄, rΛ)ϕ(rQ, rq̄, rΛ)Ω∫ 1
0 dxϕ(1, rq̄, rΛ)ϕ(rQ, rq̄, rΛ)

, (13)

where

Ω =
2(1 − x)[1 − rq̄ − M0(rQ, rq̄)]
α0(1, rq̄)α1(rQ, rq̄)α2(rQ, rq̄)

.

Here the wave function ϕ(rQ, rq̄, rΛ) =
√

dz
dxexp( −(z2)/

2r2
Λ) is the z–part of φ in (12) and the term M0(rQ, rq̄)

has now y2 = 0. The overall power suppression of order
r2
Λ/rq̄ for 1−ρ(0) as stated previously becomes clear since

the leading term in the Taylor expansion is of order r2
Λ,

and the term (1 − x)/α0α1α2 in Ω behaves like O(1/rq̄)
only as described below. The kinematic effect leading to
zero breaking in 1−ρ(0) can readily be seen from the [1−
rq̄−M0(rQ, rq̄)] term in Ω for which kinematic suppression
in addition to the mass effect occurs when M0(rQ, rq̄) is
close to 1 − rq̄. Since m2

hM2
0 (rQ, rq̄) = (pQ + pq̄)2 is the

momentum sum of the recoiling Qq̄, kinematic suppression
in 1 − ρ(0) occurs when (pQ + pq̄)2 ≈ (mh − mq̄)2.

For rQ > rq̄, the contribution to 1 − ρ(0) in the inte-
grals of (13) is dominated by the Gaussian peak at x =
xpeak ∼= 1−rq̄/

√
rQ coming from the wave function overlap

of ϕ(1, rq̄, rΛ)ϕ(rQ, rq̄, rΛ). The integrals can be approx-
imated by setting x = xpeak in the integrands so that
1 − ρ(0) = r2

ΛΩ|x=xpeak . This gives

1 − ρ(0) =
r2
Λ[ 1 − rq̄ − M0(rQ, rq̄)|x=xpeak ]

rq̄rQ(1 +
√

(rQ))2
, (14)

for which the symmetry breaking 1 − ρ(0) reveals both
1/mQ mass suppression through the rQ = mQ/mh term

in the denominator and kinematic suppression through the
[1 − rq̄ − M0(rQ, rq̄)|x=xpeak ] term in the numerator. The
overall power suppression of order r2

Λ/rq̄ for 1 − ρ(0) as
stated above can readily be seen from (14). The kinematic
suppression [1 − rq̄ − M0(rQ, rq̄)|x=xpeak ] in (14) behaves
differently from mass suppression as shown in Fig. (4) for
which it reaches zero prior to the heaviest limit of rQ =
1 and stays negative thereafter. Also, the point of zero
appears at lower recoil mass rQ from the heaviest limit
when rq̄ is larger. This renders the mass suppression in
1 − ρ(0) to be obscured by the kinematic effect (more
pronounced for larger rq̄), and the overall mass behaviour
of 1 − ρ(0) deviates from 1/mQ suppression when rq̄ is
further away from the strict limit. In the strict heavy-
quark limit of rq̄ → 0, it is easy to show that the kinematic
suppression [1−rq̄−M0(rQ, rq̄)|x=xpeak ] → 1−rQ for which
it reaches zero at rQ = 1. The symmetry breaking 1 −
ρ(0) will stay positive for all rQ and the mass suppression
behaviour will remain.

The quantity ρ(0) has the following physical meaning:

|ρ(0)|2 =
(m2

H − m2
V )3

(m2
H − m2

P )3
dΓ (H → Plν̄)/dq2|q2=0

dΓ (H → VLlν̄)/dq2|q2=0
. (15)

This allows a test of these results to be made by consider-
ing the q2 spectrum for the semileptonic decays H(hq̄) →
P, VL(Qq̄). The size of ρ(0) for particular values of rQ and
rq̄ can now be measured. Repeating this for the different
semileptonic decay channels of H, the dependence of ρ(0)
with rQ and rq̄ can also be determined.
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